文章專區

2015-12-01地底水槽探索 微中子震盪 552 期

Author 作者 張敏娟/任職輔仁大學物理系副教授、兼任磨課師(MOOCs)執行長。曾任國際及兩岸教育處學術交流中心主任、中華民國物理學會《物理雙月刊》總編輯。
今(2015)年10 月6 日,諾貝爾遴選委員會宣布物理獎由梶田隆章(Takaaki Kajita)與亞瑟.麥唐納(Arthur B. McDonald)獲獎。表彰他們找到微中子(neutrino)震盪的證據,進而推測微中子具有質量的貢獻。
 
亞瑟.麥唐納(Arthur B. McDonald)1943 年生,加拿大物理學家。(Arthur B. McDonald)


梶田隆章(Takaaki Kajita),1959 年生,日本物理學家、天文學家。(ICRR, the University of Tokyo

梶田是日本人,目前56 歲,是日本東京大學的教授。1981 年埼玉大學物理系畢業,接著在東京大學念物理博士,並加入位於日本神岡的大水槽實驗(KamiokaNDE),1986 年博士班畢業。他在畢業後,於東京大學理學院繼續擔任助手(1986)、接著轉到該校宇宙線研究所擔任助手(1988)、助教授(1992)、教授(1999)、所長(2008)。他參與神岡大水槽實驗(KamiokaNDE)與超級神岡大水槽實驗(Super-KamiokaNDE),研究能力傑出,獲得許多研究大獎。最特別的大獎之一是在2002 年,梶田與影響他最深的兩位老師、前輩:戶塚洋二與小柴昌俊,三人共同獲得潘諾夫斯基實驗粒子物理學獎。小柴昌俊因為神岡大水槽實驗獲得2002 年的諾貝爾物理獎(超級神岡大水槽實驗的前身),戶塚洋二是主導超級神岡大水槽實驗的前期主要負責人(2008 年因為癌症過世)。

而麥唐納是加拿大人,目前72 歲,是加拿大皇后大學的教授。麥唐納1964 年達爾豪西大學物理系畢業,1965 年同
校物理碩士畢業,接著轉往美國加州理工學院念物理博士,1969 年畢業。他在博士畢業後,於加拿大首都渥太華的喬克河核子實驗室任職研究員(1970~1982)。接著轉往美國普林斯頓大學任職教授(1982~1989),之後又回加拿大的皇后大學擔任教授(1989)。

麥唐納在任職皇后大學期間,領導位於加拿大安大略省的薩德伯里微中子觀測站(Sudbury Neutrino Observatory, 1999~2006)。在2001 年8 月,麥唐納領導的薩德伯里微中子觀測站團隊,發表實驗結果並推論出「來自太陽的電子微中子,會因為微中子振盪機制改變為緲子微中子和濤微中子」。這個結果支持在1998 年,超級神岡大水槽實驗發
表的類似論點文章。因此2007 年,美國費城富蘭克林研究所,將富蘭克林獎章頒發給領導超級神岡大水槽實驗與薩德
伯里微中子觀測站團隊的戶塚洋二與亞瑟·麥唐納。我想,如果戶塚洋二能夠活久一點,一定也可以拿到諾貝爾物理獎
的。

 
微中子震盪
為微中子在三種「味」之間震盪,意思是電子微中子(e)、渺子微中子(μ)、與濤微中子(τ)之間,會互相轉換身份。

味(Flavour):
代表的意思跟「種類」類似,但是也含有看不見、摸不著的意思。

關於微中子被提出與命名的歷史

從沃爾夫岡‧ 包立說起。奧地利理論物理學家包立(Wolfgang Pauli, 1900~1958)是量子力學研究先驅之一。一般廣為所知的是他提出的包立不相容原理,發展出自旋理論,重新詮釋物質結構。包立獲得1945 年的諾貝爾物理獎。包立很少發表論文,他比較喜歡與同行交換長篇的信件。1930 年,包立思考了β 衰變(beta decay)的問題,也就是原子核轉變為另一種原子核時,會伴隨產生一種小粒子。他寫信給同行,提出存在一種電中性的、迄今為止未被觀測到的小粒子假說,以此解釋β 衰變。不過這個看不見的小粒子,到底要怎麼繼續討論它,包立很苦惱。

1934 年, 恩里科· 費米(Enrico Fermi, 1901~1954)為美籍義大利裔物理學家,重新詮釋包立的β 衰變假說。費米將包立苦惱的那個伴隨β 衰變產生的小粒子,命名為微中子(neutrino),讓β 衰變滿足能量守恆理論,並定義:「β 衰變是放射性原子核放射電子(β 粒子)和微中子而轉變為另一種原子核的過程。」由於費米是義大利人,所以微中子命名給人的感覺,很像義大利咖啡卡布奇諾(Cappuccino)。費米重新詮釋的β 衰變,是弱作用力理論的前身。他演示了幾乎所有元素在中子轟炸下都會發生核變化。慢中子和核裂變的發現,也是費米以及他的學生們推論出來。費米獲得1938 年的諾貝爾物理獎。

微中子研究,從費米之後,百家爭鳴。其中以1964 年提出夸克理論的默里·蓋爾曼(Murray Gell-Mann,1929 ~)為首,漸漸朝向基本粒子標準模型邁進。蓋爾曼因此獲得1969 年的諾貝爾物理獎。微中子們在還沒被找出來之前,就已經被預測會出現,並預先留好座位給他們了。尋找微中子特性的實驗很多,本文僅說明此次獲諾貝爾獎的兩個實驗。第一個是日本超級神岡大水槽,第二個是加拿大薩德伯里微中子觀測站。

微中子的實驗觀測,主要分為四種:太陽微中子、大氣微中子、核反應爐微中子與粒子束微中子。神岡大水槽與超級神岡大水槽,屬於觀測大氣微中子的實驗;加拿大薩德伯里微中子觀測站,則屬於觀測太陽微中子的實驗。

至於核反應爐微中子,比較有名的是日本的KamLAND 和中國大陸大亞灣微中子實驗,它們都屬於把偵測器放在核能發電廠旁邊的實驗。而粒子束微中子,是利用加速器產生微中子光束的實驗,比較有名的有美國的MINOS、日本的K2K、T2K。還有許多有名的微中子實驗室,就不一一列舉。

日本超級神岡大水槽實驗,地點位於日本岐阜縣飛驒市神岡町的一個廢棄砷礦裡面。神岡是一個非常純樸的傳統日本小鎮。超級神岡大水槽實驗所在的廢棄礦坑,是更早之前的神岡大水槽實驗的地點,但是規格擴大了十倍。超級神岡大水槽為直徑約39.3 公尺、高度約41.4 公尺的不鏽鋼圓柱形容器,裡面注入約5 萬噸純水,容器內壁使用約1 萬1200
個光電倍增管,用於探測高速微中子在水中通過時產生的「契忍可夫光(Cherenkov light)」。

 

日本超級神岡大水槽實驗

超級神岡大水槽,主要觀測大氣微中子,微中子觀測數量之理論預測值並不隨天頂角而改變,而是呈一定值。然而,超級神岡大水槽於1998 年發現,從大水槽下方進來的渺子微中子(產生於地球另一側)被觀測到的數量是從大水槽上方進來的渺子微中子數量的一半。這個結果被解釋成微中子轉變至其他種類的微中子,這個現
象即是微中子震盪。此發現表示微中子具有有限質量,並暗示著標準模型需要被延伸。微中子在三種「味」之間震盪,而且各種微中子皆有其靜止質量。於2004 年的進一步分析顯示,事件發生率是長度除以能量的函數,並有著正弦函數的對應關係,確認了微中子震盪理論。
 

日本超級神岡大水槽(Super-KamiokaNDE)。(Super-Kamiokande Collaboration, Japan)

超級神岡大水槽的位置,在地底下1000 公尺深,主要是為了隔離地面上的各種背景雜訊。大水槽上方,承受每平方公
尺2700 噸的壓力。還好礦坑由堅硬的岩石所組成,承受得住壓力。1991 年12 月,超級神岡大水槽開始正式動工,總共花了約兩年半,才把地底下需要的空間清空。接著用噴水泥的方式,把牆面固定。每隔一定距離,在牆面做一個記
號、鑿一條小通道,預留空間給光電倍增管安裝電線。為了讓地底下的五萬噸純水保持純淨,大水槽旁邊建了一座淨水系統,隨時淨水。為了分析數據,在大水槽上方的地面上,蓋了一個電腦中心。所有實驗數據都透過電子訊號讀出系統送到電腦中心,做數據分析與值班的人員,可以在地面上處理。

當帶電粒子高速通過純水,有機會產生契忍可夫光。理論物理學家推論,當水裡面的質子被高能量的粒子打碎,產生
衰變放出微中子,就有機會發出契忍可夫光。接著使用光電倍增管,將光訊號放大變成光電子訊號,由於具有高壓電
的光電倍增管,可以讓光電子在管中產生電子雪崩效應,讓電訊號放大,這樣就能找到質子衰變的證據。一開始建造大水槽的目的,是為了找質子衰變。直徑約50 公分的光電倍增管,外層的玻璃,是由日本吹玻璃技師細心做出來的,同時訓練一批技師,將光電倍增管的電極等元件,一層一層的裝好,放進玻璃管裡面。再接著用高溫融封玻璃管,一邊也確定壓力穩定沒變形之後,再將電線放入光電倍增管連接電極、電線拉出的地方做最後的防水封裝。1994 年7 月,光電倍增管完成。讀出訊號的電子設備、物理理論模擬軟體,在籌備階段也跟著一起研究。在硬體準備就緒後,所有電子設備全部運到地底下大水槽的正上方,準備做即時數據監控。

 

契忍可夫光
契忍可夫光是帶電粒子以超過光速穿過介質時發出的光。要超過的
光速是光的相速度而非群速度。契忍可夫光在1934 年, 由蘇聯物理學家帕維爾·契忍可夫(Pavel Cherenkov)發現的。這個現象跟飛機以超音速飛行,產生音波堆疊,堆疊承受不住後,發生音爆現象類似。只是改成帶電粒子以超光速飛行,產生光子震波堆疊,堆疊承受不住後,發生光爆現象。契忍可夫與另外兩位蘇聯物理學家成功解釋契忍可夫光的成因後,於1958 年,三人一起拿諾貝爾物理獎。
 

(wikipedia)

無論是神岡大水槽或是超級神岡大水槽,都沒能找到質子衰變的事件。讀者可能會疑惑:「如果神岡大水槽一直都沒有達到原本希望達到的實驗目的,為何還會再花那麼多錢、升級擴建變成十倍大的超級神岡大水槽呢?」最關鍵的原因是:「神岡大水槽意外的在1987 年2 月,測量到大麥哲倫雲中超新星1987A 爆發時產生的微中子。」

在1987A 爆發的光線來到地球的3 小時前,世界各地有三台微中子探測器同時偵測到微中子爆發,廣泛接受的理由是微中子於超新星爆發時,比可見光更早被發射出來,而不是微中子比光速快。這三台微中子探測器分別為:日本的神岡大水槽,美國的厄文– 密西根– 布魯克海汶偵測器(IMB),俄羅斯的BAKSAN 偵測器。神岡大水槽因為有了意外的微中子訪客而爆紅,促成了超級神岡大水槽計劃。而原本希望量測質子衰變的目標,也中途改為以大氣微中子的研究為主。


加拿大薩德伯里微中子觀測站,實驗地點位於2100 米深的鎳礦中。跟超級神岡大水槽的1000 米深的砷礦比起來,還要再深1100 米。在地底下2100 米深,主要是為了隔離地面上的各種背景雜訊。觀測站上方,承受巨大的壓力,因此使用特殊錨杆技術支撐住。

薩德伯里微中子觀測站中,有一個直徑12米的球形容器,裡面裝有1000 噸重水,容器壁用丙烯酸脂製成,厚度5 厘米。在這容器的外面有一個直徑17 米的偵測球,在偵測球裡面安裝了9600 個光電倍增管,用於偵測契忍可夫光。為了給予浮力與輻射屏蔽,整個探測器浸泡在直徑22米、高度約34米、裝滿普通水的圓柱形腔體中。

早於1960 年代,就已有美國Homestake實驗獲得關於太陽微中子抵達地球的測量數據。在薩德伯里微中子觀測站之前,所有實驗都只觀測到大約為標準太陽模型所預測的微中子數量的1/3 至1/2。這被稱為太陽微中子難題。幾十年來,很多理論被提出來解釋這效應。其中一個是微中子振盪假說。1984 年,美國加州大學爾灣分校的物理學教授赫伯特·陳(Herbert Chen)指出,重水是製作太陽微中子探測器的優良材料,因為可以清楚分辨三種微中子與電子微中子,適合研究太陽微中子振盪。1990 年,實驗計畫正式被批准。在這實驗裡,當微中子與重水交互作用時,會出現電子以高速移動經過重水,因契忍可夫效應而產生藍色光錐。利用光電倍增管可以偵測出光訊號。

 
加拿大薩德伯里微中子觀測站,主要觀測太陽微中子。在太陽微中子理論中,有三種產生微中子的衰變:
一、在電性流交互作用裡,微中子將重氫裡的中子變為質子,並且釋出一個電子。
二、在中性流交互作用裡,微中子離解了重氫,將其分裂成中子、質子。
三、在電子彈性散射裡,微中子與束縛於原子裡的電子發生碰撞。

在薩德伯里微中子觀測站中,以上三種產生微中子的衰變,每天都可以量測得到。2001 年6 月18 日,薩德伯里微中子觀測站因為透過研究這三種太陽微中子衰變,也確定了微中子會轉變至其他種類的微中子,產生微中子震盪,確認了微中子震盪理論。
 

加拿大薩德伯里微中子觀測站(Sudbury Neutrino Observatory)。(SNO)

物理獎的未來

微中子的研究風潮,仍然在高能物理科學界如火如荼地進行者。因為研究微中子而發表優秀實驗結果的團隊,依然很多。明年的諾貝爾物理獎,會不會又是給高能物理實驗呢?會是哪一個團隊呢?每年的十月份,總讓人充滿期待。